
A small MPLS VPN tutorial 
(by Alexandre Ribeiro, alexandregomesribeiro@gmail.com) 

 

 
Overview 

 

I'm now half way through the MPLS and VPN Architectures book and I decided to try to make some 

sense out of all the things I'm reading. As I said previously, I'm not impressed by this book, since it's 

badly structured and it skips some important troubleshooting points (like one I'm going to present in 

this tutorial).  

 

The following tutorial assumes some familiarity with MPLS and considerable IP knowledge. 

 

The topology I used for this small tutorial is simple. It consists of two clients, A and B, each of which 

has two sites, A1 and A2 for client A, and B1 and B2 for client B. Then there are three LSRs: two of 

these are PE routers, PE_A connects to A1 and B1 and PE_Z connects to A2 and B2. 

 

To make things interesting I decided to make clients A and B to have totally overlapping IP networks 

(isn't this the point of a VPN? :-) ). The figure below illustrates the scenario I've just described: 

 

 

Figure 1: MPLS VPN scenario 

 

 

 

 

Definitions 

 

Before I begin rambling about configurations, I'll explain some important topics first, so that we're 

speaking the same language when I get down to configuring the routers. I'm assuming that you have a 

sound knowledge of IP (routing, IGPs, BGP, etc). If you don't exactly understand one of the definitions 

below, don't worry, it'll become very clear in a later part of this tutorial, when actually configuring the 

routers. So, let's get down to some definitions: 

 

FEC – Forwarding equivalence class. A FEC is a group of packets that are routed the same way (i.e. to 

the same destination). In more practical terms, each entry of a router's routing table is a FEC. 

 



Label – This is MPLS's foundation. A router will generate a label for each FEC it has. A Provider router 

(the “P” router in the figure above) will switch frames purely based on the label, without ever needing 

to go to L3 information on the frame. 

 

LDP – Label distribution protocol. After generating the labels for the FECs, a router needs to inform its 

neighbors of the relationship between its FECs and the labels it has generated, so that neighbor routers 

may mark packets whose destination is the FEC with the respective label. LDP is used to disseminate 

label-to-FEC information. 

 

The figure below will make the definitions above “click” together: 

 

Figure 2: LDP at work 

 

 

 

In figure 2 you can see router PE_Z communicating the label for FEC 172.16.1.0/20 to router P. Router 

P then does the same for router A. The labels assigned to FEC are locally significant. In the figure 

above router P could actually have used the same label as router PE_Z (label 16). 

 

After the labels are known to all the routers, the P routers can switch frames purely based on labels. The 

figure below illustrates this: 

 



 

Figure 3: Frame forwarding with MPLS 

 

 

The definitions and illustrations above define what “basic” MPLS is. Just with this it's possible to reap 

tremendous benefit in a carrier's BGP core (the explanation to this is way out of this small tutorial's 

scope). 

 

Continuing with some definitions: 

 

VPN - Virtual private network. Behaves like a physical private network, but it's "virtual" :-). There are 

two types of VPNs, peer-to-peer and overlay. The peer-to-peer VPN is an L3 VPN, where the CE and 

PE have to have L3 connectivity. In the overlay VPN the carrier will offer “emulated” L2 services to 

connect the VPN's sites. 

 

Site - A site is a part of one or more VPNs, or the other way around, a VPN is a set of sites, where each 

site may belong to more than one VPN. In this tutorial's scenario, each site is only a member of one 

VPN (sites A1 and A2 are members of Client A's VPN and sites B1 and B2 are members of Client B's 

VPN). If you now had some sort of central resource (in a different VPN) that had to be access by A1 

and B1, then those sites would also be members of another VPN, to be able to access that central 

resource. 

 

VRF - Virtual Routing and forwarding instance. Composed of the routing table and the forwarding 

table. The VRF contains routes of one or more VPNs. In an extreme scenario you could have one VRF 



per site and in another extreme one VRF per VPN. Usually something in the middle happens. 

 

Route target – Think of this as a VPN Id. A VRF has to be somehow identified, so that its information 

may travel through an MP-BGP core to another PE router, where it'll be imported by VRF's in that PE 

router. 

 

Route distinguisher – If there are overlapping IP networks in some VPN's, there has to be some way of 

distinguish them. Rd's are attached to each route, so that they become unique in the MP-BGP core. 

 

MP-BGP – Multi protocol BGP. Each PE router has to communicate its routes to other PE routers. 

Since the routes it has are now 96 bits long (32 bits of the IP route plus 64 bits for the RD), BGP can't 

be used. MP-BGP has two extended attributes for VPNs: Site of origin (SOO) and Route target. The 

SOO is used for loop prevention (needed only in multi-homing scenarios). 

 

 

Overall description of an MPLS VPN working 

 

The problem being solved by an MPLS VPN is the isolation of different customer's traffic (which may 

or may not have overlapping IP addresses). Since the customer's traffic will be isolated, they could be 

totally unaware that they're using an MPLS VPN, since traffic will be forwarded in a transparent 

fashion. 

 

So, you have the Customer Edge (CE) routers, which don't need any special configuration at all. They 

be connected to a PE router via IP, usually a point to point connection, using a /30 network for instance. 

 

The PE routers is where the fun begins :-). In the PE routers you have to create VRF's that'll contain 

routes for one or more VPN. VRF's, as stated before, are usually created for a set of sites. Each VRF 

will contain the routes for the sites it pertains to. PE routers have to communicate their VRF's contents 

between themselves. To that end MP-BGP is used. Each PE routers has a MP-BGP connection (iMP-

BGP) to every other PE router. Since MPLS is being used, each PE router has a label for every other PE 

router in the MPLS core. Furthermore, for each route inside each VRF, a label is assigned. This means 

that when a PE router get a packet, it will check the corresponding VRF, add the relevant label to the 

packet, then check the labels for the egress PE router and also add a label for that PE router. This means 

that the frame leaving the ingress PE router will actually have two labels. You can check a VRF's MPLS 

forwarding table with “sh mpls forwarding-table vrf vrfname”. The global MPLS forwarding table can 

be checked with the same command, without the vrf part at the end. 

 

The P routers are highly efficient, since all they have to do is to switch frames based on the outer label. 

Remember that the frame being passed between PE routers have two labels, the inner one identifying a 

network for a specific VRF, and the outer one identifying the egress PE. The P router only switches 

based on the outer label, making the frame arrive to the egress PE router. 

 

And this is it! It's actually quite simple :-) If this hasn't quite sinked in, be sure that it will after the next 

section, where I'll actually implement the scenario show in the first figure of this tutorial. 

 

 



Configuring the routers 

 

 

IGP configuration inside the MPLS backbone 

 

I’m assuming that all ports are configured according to figure 1 (except the VRF part) and that PE_A, P 

and PE_Z have loopback ports configured with IP addresses 172.16.1.1/32, 172.16.1.2/32 and 

172.16.1.3/32 respectively. I chose OSPF as the IGP to give basic routing connectivity inside the MPLS 

core. So, let’s start: 

 

PE_A(config)#router ospf 110 

PE_A(config-router)#network 172.16.0.0 0.0.255.255 area 0 

PE_A(config-router)#network 192.168.1.0 0.0.0.255 area 0 

 

 

P(config)#router ospf 110 

P(config-router)#network 172.16.0.0 0.0.255.255 area 0 

P(config-router)#network 192.168.1.0 0.0.0.255 area 0 

P(config-router)# 

*Aug 26 11:56:05.579: %OSPF-5-ADJCHG: Process 110, Nbr 172.16.1.1 on Serial1/0 from 

LOADING to FULL, Loading Done 

 

PE_Z(config)#router ospf 110 

PE_Z(config-router)#network 172.16.0.0 0.0.255.255 area 0 

PE_Z(config-router)#network 192.168.1.0 0.0.0.255 area 0 

PE_Z(config-router)# 

*Aug 26 11:58:07.851: %OSPF-5-ADJCHG: Process 110, Nbr 172.16.1.2 on Serial1/2 from 

LOADING to FULL, Loading Done 

 

 

Now we have connectivity from PE_A to PE_Z: 

 

PE_Z#ping 172.16.1.1 

 

Type escape sequence to abort. 

Sending 5, 100-byte ICMP Echos to 172.16.1.1, timeout is 2 seconds: 

!!!!! 

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/33/44 ms 

 

 

 

 

 

 

 

 

 



 

PE_Z#sh ip ro 

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP 

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area 

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 

       E1 - OSPF external type 1, E2 - OSPF external type 2 

       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 

       ia - IS-IS inter area, * - candidate default, U - per-user static route 

       o - ODR, P - periodic downloaded static route 

 

Gateway of last resort is not set 

 

     172.16.0.0/32 is subnetted, 3 subnets 

O       172.16.1.1 [110/129] via 192.168.1.5, 00:01:13, Serial1/2 

C       172.16.1.3 is directly connected, Loopback0 

O       172.16.1.2 [110/65] via 192.168.1.5, 00:01:13, Serial1/2 

     192.168.1.0/30 is subnetted, 2 subnets 

O       192.168.1.0 [110/128] via 192.168.1.5, 00:01:13, Serial1/2 

C       192.168.1.4 is directly connected, Serial1/2 

 

 

Basic MPLS configuration 

 

We can now enable MPLS to start to see some labels being exchanged. We have to enable MPLS 

globally and in each interface that’s going to use it (the interfaces inside the MPLS cloud, excepting 

those that connect to CEs): 

 

 

PE_A(config)#mpls ip 

PE_A(config)#int s1/2 

PE_A(config-if)#mpls ip 

 

P(config)#mpls ip 

P(config)#int s1/0 

P(config-if)#mpls ip 

P(config-if)#int s1/1 

P(config-if)#mpls ip 

*Aug 26 12:03:08.491: %LDP-5-NBRCHG: LDP Neighbor 172.16.1.1:0 (1) is UP 

 

PE_Z(config)#mpls ip 

PE_Z(config)#int s1/2 

PE_Z(config-if)#mpls ip 

PE_Z(config-if)# 

*Aug 26 12:04:42.739: %LDP-5-NBRCHG: LDP Neighbor 172.16.1.2:0 (1) is UP 

 

When you activate MPLS, LDP is automatically turned on and labels start being advertised (default 

mode: downstream unsolicited). 



 

 

We now can see the MPLS forwarding table: 

 

PE_Z#sh mpls for 

Local  Outgoing    Prefix            Bytes tag  Outgoing   Next Hop 

tag    tag or VC   or Tunnel Id      switched   interface 

16     16          172.16.1.1/32     0          Se1/2      point2point 

17     Pop tag     172.16.1.2/32     0          Se1/2      point2point 

18     Pop tag     192.168.1.0/30    0          Se1/2      point2point 

Notice that each FEC got a label, that’s being advertised through LDP.  You can also see an example of 

pure MPLS switching in this table. When this router receives a frame that has label 16, it swaps the 

label with 16 (the same label by coincidence) and sends it out S1/2. 

The local tag is the tag locally assigned by this router to the FEC. It’s the label that’s advertised to the 

neighbors through LDP. The outgoing tag is the tag that’s placed on a frame for a packet that fits the 

Prefix. 

 

You can see the actual labels in the database (LIB – Label information base), instead of seeing the 

MPLS forwarding table (LFIB – Label Forwarding Information Base): 

 

PE_Z#sh mpls ldp bind 

  tib entry: 172.16.1.1/32, rev 2 

        local binding:  tag: 16 

        remote binding: tsr: 172.16.1.2:0, tag: 16 

  tib entry: 172.16.1.2/32, rev 6 

        local binding:  tag: 17 

        remote binding: tsr: 172.16.1.2:0, tag: imp-null 

  tib entry: 172.16.1.3/32, rev 4 

        local binding:  tag: imp-null 

        remote binding: tsr: 172.16.1.2:0, tag: 17 

  tib entry: 192.168.1.0/30, rev 8 

        local binding:  tag: 18 

        remote binding: tsr: 172.16.1.2:0, tag: imp-null 

  tib entry: 192.168.1.4/30, rev 10 

        local binding:  tag: imp-null 

        remote binding: tsr: 172.16.1.2:0, tag: imp-null 

 

Directly connected networks get an imp-null label, which is actually label 3. This way a neighboring 

router knows that it has to pop the tag. 

 

Let’s see the MPLS forwarding table on the P router: 

 

P#sh mpls forwarding-table 

Local  Outgoing    Prefix            Bytes tag  Outgoing   Next Hop 

tag    tag or VC   or Tunnel Id      switched   interface 

16     Pop tag     172.16.1.1/32     0          Se1/0      point2point 

17     Pop tag     172.16.1.3/32     0          Se1/1      point2point 



 

As you can see when the P router gets a frame with label 16, it pops the label and forwards the frame to 

S1/0 (where PE_A, with IP 172.16.1.1/32 is). When it gets a frame with label 17, it pops the label and 

forwards the frame to s1/1 (where PE_Z is). 

 

 

VRF configuration 

 

Looking at figure 1 you can see that both s1/0 and s1/1 have the same IP address. This was done on 

purpose to show what a VPN is all about. Since client’s A and B have overlapping networks, I also 

wanted overlapped IP addresses on the interfaces. To configure VRFs do the following: 

 

PE_A(config)#ip vrf ClientA 

PE_A(config-vrf)#route-target 64999:1 

PE_A(config-vrf)#rd 999:1 

PE_A(config-vrf)#ip vrf ClientB 

PE_A(config-vrf)#route-target 64999:2 

PE_A(config-vrf)#rd 999:2 

 

This configures two VRFs, ClientA and ClientB. ClientA’s VRF will contain the routes for the VPN 

ClientA is in. I defined a route target (aka VPN id) of 64999:1 and a route distinguisher (so that 

overlapping routes can be distinguished on the MP-BGP backbone) of 999:1. I could have made RT and 

RD the same, but I wanted to have different values, just to show you that you can have different values. 

ClientB’s VRF configuration is similar, with 64999:2 and 999:2 as RT and RD respectively. 

 

After having defined VRFs, you should assign them to an interface, so that traffic coming into that 

interface can use that VRF’s routing table: 

 

PE_A(config-vrf)#int s1/0 

PE_A(config-if)#ip vrf forwarding ClientA 

PE_A(config-if)#ip address 10.1.1.2 255.255.255.252 

PE_A(config-if)#no shut 

PE_A(config-if)#int s1/1 

PE_A(config-if)#ip vrf forwarding ClientB 

PE_A(config-if)#ip address 10.1.1.2 255.255.255.252 

PE_A(config-if)#no shut 

 

A similar configuration has to be done for PE_Z (the only difference being the IP address, which is 

10.1.1.6/30). 

 

MP-BGP configuration 

 

Now that VRFs are configured, we have to have a way of communicating the routes they contain 

throughout the backbone. Since routes contained in VRFs have 96 bits each (32 for IP + 64 for RD), a 

multi protocol routing protocol has to be used. Alternatives here are IS-IS or MP-BGP. I chose MP-BGP 

since it’s designed for the huge amount of routes you may have to handle in a VPN. 

 



Configuring MP-BGP is surprisingly simple: 

 

PE_A(config)#router bgp 64999 

PE_A(config-router)#no bgp default ipv4-unicast 

 

Just a small explanation before continuing: BGP by default exchanges IPv4 routes between neighbors, 

and starts that exchange as soon as the neighbors are identified. Since we’re going to exchange VPN 

addresses, we have to disable this default behavior. This is done by issuing the no bgp default ipv4-

unicast command. 

 

PE_A(config-router)#neighbor 172.16.1.3 remote-as 64999 

PE_A(config-router)#neighbor 172.16.1.3 update-source lo0 

 

Above are your standard BGP neighbors enabling commands. Note that the BGP connection will not be 

established at this moment, since we’ve deactivated BGP’s default behavior. 

 

 

Now we define that we want to exchange vpnv4 routes (32+64 bits), and we activate the neighbor: 

 

PE_A(config-router)#address-family vpnv4 

PE_A(config-router-af)#neighbor 172.16.1.3 activate 

 

After doing the same at PE_Z you get: 

 

*Aug 26 15:58:41.131: %BGP-5-ADJCHANGE: neighbor 172.16.1.1 Up 

 

Now we have an MP-BGP neighborship established :-) 

 

 

PE_Z#sh ip bgp neigh 172.16.1.1 

BGP neighbor is 172.16.1.1,  remote AS 64999, internal link 

  BGP version 4, remote router ID 172.16.1.1 

  BGP state = Established, up for 00:02:33 

  Last read 00:00:33, last write 00:00:33, hold time is 180, keepalive interval is 60 seconds 

  Neighbor capabilities: 

    Route refresh: advertised and received(old & new) 

    Address family VPNv4 Unicast: advertised and received 

  Message statistics: 

    InQ depth is 0 

    OutQ depth is 0 

                         Sent       Rcvd 

    Opens:                  1          1 

    Notifications:          0          0 

    Updates:                0          0 

    Keepalives:             5          5 

    Route Refresh:          0          0 

    Total:                  6          6 



Default minimum time between advertisement runs is 0 seconds 

 

 

RIP configuration 

 

We now have to configure an IGP to exchange routes with our clients. We could do it via static 

routing, but having an IGP reduces OPEX :-) 

 

I’m assuming that the necessary configuration has been done at the clients, something like: 

 

router rip 

version 2 

network 10.0.0.0 

no auto-summary 

 

Now we go to the PEs, to configure RIP per VRF: 

 

PE_A(config)#router rip 

PE_A(config-router)#version 2 

 

RIP can run a different « context » per VRF. To do it we must configure it per VRF, with the now 

familiar address-family command: 

 

PE_A(config-router)#address-family ipv4 vrf ClientA 

PE_A(config-router-af)#version 2 

PE_A(config-router-af)#network 10.0.0.0 

PE_A(config-router-af)#no auto-summary 

 

We do the same for vrf ClientB, and we do a similar configuration at PE_Z. 

 

Now we have RIP running between the PEs and CEs, and MP-BGP running between the PEs. We have 

ships in the night :-). Let’s redistribute between RIP and BGP and vice-versa: 

 

PE_A(config)#router bgp 64999 

PE_A(config-router)#address-family ipv4 vrf ClientA 

PE_A(config-router-af)#redistribute rip metric 1 

PE_A(config-router-af)#address-family ipv4 vrf ClientB 

PE_A(config-router-af)#redistribute rip metric 1 

 

 

PE_A(config-router-af)#router rip 

PE_A(config-router)#address-family ipv4 vrf ClientA 

PE_A(config-router-af)#redistribute bgp 64999 metric 1 

PE_A(config-router-af)#address-family ipv4 vrf ClientB 

PE_A(config-router-af)#redistribute bgp 64999 metric 1 

 

We do the same for PE_Z. Routes are now being redistributed into VRFs: 



 

PE_Z#sh ip bgp vpnv4 all 

BGP table version is 9, local router ID is 172.16.1.3 

Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, 

              r RIB-failure, S Stale 

Origin codes: i - IGP, e - EGP, ? - incomplete 

 

   Network          Next Hop            Metric LocPrf Weight Path 

Route Distinguisher: 999:1 (default for vrf ClientA) 

*>i10.1.1.0/30      172.16.1.1               0    100      0 ? 

*> 10.1.1.4/30      0.0.0.0                  0         32768 ? 

Route Distinguisher: 999:2 (default for vrf ClientB) 

*>i10.1.1.0/30      172.16.1.1               0    100      0 ? 

*> 10.1.1.4/30      0.0.0.0                  0         32768 ? 

 

 

We’re done! 

 

A1 can now reach A2, and B1 can now reach B2. 

 

A1>sh ip ro 

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP 

       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area 

       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 

       E1 - OSPF external type 1, E2 - OSPF external type 2 

       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 

       ia - IS-IS inter area, * - candidate default, U - per-user static route 

       o - ODR, P - periodic downloaded static route 

 

Gateway of last resort is not set 

 

     10.0.0.0/30 is subnetted, 2 subnets 

C       10.1.1.0 is directly connected, Serial1/0 

R       10.1.1.4 [120/1] via 10.1.1.2, 00:00:22, Serial1/0 

 

 

 

A1>ping 10.1.1.5 

 

Type escape sequence to abort. 

Sending 5, 100-byte ICMP Echos to 10.1.1.5, timeout is 2 seconds: 

!!!!! 

Success rate is 100 percent (5/5), round-trip min/avg/max = 60/71/80 ms 

 

 

 

 



 

 

Troubleshooting 

 

I’m not going to state here typical troubleshooting techniques. Instead I’m going to talk about 

something that took me over 6 hours to figure out… 

 

I did everything exactly like described above, with one very small difference: all the loopback 

addresses were /24 instead of /32. 

 

When I enabled BGP in the PEs I got the following error/warning: 

 

*Aug 26 06:59:34.559: %BGP-5-ADJCHANGE: neighbor 172.16.1.1 Up  

*Aug 26 06:59:34.567: %BGP-4-VPNV4NH_MASK: Nexthop 172.16.1.3 may not be reachable from 

neigbor 172.16.1.1 - not /32 mask 

 

I pinged 172.16.1.3 from PE_A and everything seemed to be fine, so I ignored this warning. Basic 

MPLS connectivity also seemed to be fine, since a “debug mpls packets” at the P router showed frames 

being switched. 

 

After setting up the VPN, I pinged from A1 to A2 and… nothing. Since I was using Dynamips, I 

quickly blamed it on a Dynamips bug, and I set up this scenario in actual routers… still the same 

behavior. I then used Dynamips to capture traffic at various points and reached the conclusion that 

traffic was being dropped at the P router. I confirmed this with “debug mpls drops”: 

 

P#debug mpls drops 

MPLS drops debugging is on 

P# 

*Aug 26 07:30:52.287: tagsw_replace_header: Pkt drop -- EoS conflict, incg label 16 hwinput Se1/1 

*Aug 26 07:30:54.275: tagsw_replace_header: Pkt drop -- EoS conflict, incg label 16 hwinput Se1/1 

*Aug 26 07:30:56.291: tagsw_replace_header: Pkt drop -- EoS conflict, incg label 16 hwinput Se1/1 

*Aug 26 07:30:58.315: tagsw_replace_header: Pkt drop -- EoS conflict, incg label 16 hwinput Se1/1 

*Aug 26 07:31:00.295: tagsw_replace_header: Pkt drop -- EoS conflict, incg label 16 hwinput Se1/1 

 

I searched for these errors in Google and I got nothing!!! Has no one in the world ever experienced 

this!? 

 

“debug mpls packets” confirmed that traffic was not exiting the P router: 

 

P#debug mpls packets 

MPLS packet debugging is on 

P# 

*Aug 26 07:32:22.599: MPLS: Se1/1: recvd: CoS=0, TTL=254, Label(s)=16/16 

*Aug 26 07:32:24.579: MPLS: Se1/1: recvd: CoS=0, TTL=254, Label(s)=16/16 

*Aug 26 07:32:26.559: MPLS: Se1/1: recvd: CoS=0, TTL=254, Label(s)=16/16 

*Aug 26 07:32:28.591: MPLS: Se1/1: recvd: CoS=0, TTL=254, Label(s)=16/16 

*Aug 26 07:32:30.595: MPLS: Se1/1: recvd: CoS=0, TTL=254, Label(s)=16/16 



 

 

Armed with an extremely obsessive behavior (that’s me :-) ), I tried EVERYTHING. From changing the 

MTU between PE and P links, to changing the encapsulation being used. 

 

Then I remembered that “smallish” error and decided to search for it in Google. I got this from Cisco’s 

website: 

 

%BGP-4-VPNV4NH_MASK : Nexthop [IP_address] may not be reachable from neigbor [IP_address] 

- not /32 mask 

 

Explanation    A VPNv4 route is being sent to the IBGP neighbor. The address of the next hop is a 

loopback interface that does not have a /32 mask defined. OSPF is being used on this loopback 

interface, and the OSPF network type of this interface is LOOPBACK. OSPF advertises this IP address 

as a host route (with mask /32), regardless of what mask is configured. This advertising conflicts with 

TDP, which uses configured masks, so the TDP neighbors may not receive a tag for the route indicated 

in this error message. This condition could break connectivity between sites that belong to the same 

VPN. 

 

Recommended Action    Configure the loopback that is being used as the next-hop loopback to use a 

32-bit network mask (/32), or set the network type to point-to-point by entering the ip ospf network 

point-to-point command.  
 

 

The explanation is quite simple: OSPF announced the loopback IP addresses as host routes (/32). LDP 

was expecting to find a /24 address at the routing table. Since it couldn’t find it, it didn’t advertise a 

label for this FEC!! 

 

At the P router it’s easy to see what’s happening: 

 

With /32 loopback addresses: 

 

P#sh mpls for 

Local  Outgoing    Prefix            Bytes tag  Outgoing   Next Hop     

tag    tag or VC   or Tunnel Id      switched   interface               

18     Pop tag     172.16.1.1/32     214        Se1/0      point2point   

19     Pop tag     172.16.1.3/32     126        Se1/1      point2point   

 

 

With /24 loopback addresses: 

 

P#sh mpls for 

Local  Outgoing    Prefix            Bytes tag  Outgoing   Next Hop     

tag    tag or VC   or Tunnel Id      switched   interface               

18     Untagged    172.16.1.1/32     535        Se1/0      point2point   

19     Untagged    172.16.1.3/32     315        Se1/1      point2point 

 

With /32 loopback addresses, LDP is able to announce the FEC for 172.16.1.x/32. It announces it with 



an imp-null label (label 3), meaning that the penultimate router should pop the label. 

With /24 loopback addresses, LDP doesn’t announce anything regarding 172.16.1.x/32, since it’s 

looking for 172.16.1.x/24 at the routing table. Consequently the P router doesn’t get any labels for these 

FECs and tries to untag the frames coming in with the relevant labels. 

 

Pop vs Untag 

 

Pop purely pops the top label from the frame and forwards it to the relevant interface. This is the 

behavior I wanted for this scenario, since frames going through the P router have two labels, one for the 

VPN routes and another for the egress PE router. 

 

Untag also pops the label, but it that label doesn’t have the S bit (bottom of stack) set to 1, it drops the 

frame!!! AHA!! That was it!  

 

I’m actually happy that this happened, since it got me to really understand MPLS and MPLS VPNs (I’m 

still half way through the book though, so I should learn a bit more). You should be happy too, since 

because of this you got to read this wonderful tutorial :-) 

 

Please leave a comment if you found this tutorial useful. Consider it my payment for having spent 6 

hours doing this. 

 

 

 

Router configs and dynamips file 

 

A1 
 

A1#sh run 

Building configuration... 

 

Current configuration : 1441 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname A1 

! 

boot-start-marker 

boot-end-marker 

! 

! 

no aaa new-model 

! 

resource policy 

! 



ip cef 

! 

! 

! 

interface FastEthernet0/0 

 no ip address 

 shutdown 

 duplex half 

! 

interface Serial1/0 

 ip address 10.1.1.1 255.255.255.252 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/1 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/2 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/3 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/4 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/5 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/6 

 no ip address 

 shutdown 



 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/7 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

router rip 

 version 2 

 network 10.0.0.0 

 no auto-summary 

! 

no ip http server 

no ip http secure-server 

! 

! 

! 

logging alarm informational 

! 

! 

control-plane 

! 

! 

gatekeeper 

 shutdown 

! 

! 

line con 0 

 stopbits 1 

line aux 0 

 stopbits 1 

line vty 0 4 

 login 

! 

! 

end 

 

 

 

 

 

 

 

 

B1 



 

 

B1#sh run 

Building configuration... 

 

Current configuration : 1441 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname B1 

! 

boot-start-marker 

boot-end-marker 

! 

! 

no aaa new-model 

! 

resource policy 

! 

ip cef 

! 

! 

! 

interface FastEthernet0/0 

 no ip address 

 shutdown 

 duplex half 

! 

interface Serial1/0 

 ip address 10.1.1.1 255.255.255.252 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/1 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/2 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 



! 

interface Serial1/3 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/4 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/5 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/6 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/7 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

router rip 

 version 2 

 network 10.0.0.0 

 no auto-summary 

! 

no ip http server 

no ip http secure-server 

! 

! 

! 

logging alarm informational 

! 

! 

control-plane 

! 

! 



gatekeeper 

 shutdown 

! 

! 

line con 0 

 stopbits 1 

line aux 0 

 stopbits 1 

line vty 0 4 

 login 

! 

! 

End 

 

 

 

 

 

 

 

PE_A 
 

 

PE_A#sh run 

Building configuration... 

 

Current configuration : 2604 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname PE_A 

! 

boot-start-marker 

boot-end-marker 

! 

! 

no aaa new-model 

! 

resource policy 

! 

ip cef 

! 

! 

! 



ip vrf ClientA 

 rd 999:1 

 route-target export 64999:1 

 route-target import 64999:1 

! 

ip vrf ClientB 

 rd 999:2 

 route-target export 64999:2 

 route-target import 64999:2 

! 

! 

! 

interface Loopback0 

 ip address 172.16.1.1 255.255.255.255 

! 

interface FastEthernet0/0 

 no ip address 

 shutdown 

 duplex half 

! 

interface Serial1/0 

 ip vrf forwarding ClientA 

 ip address 10.1.1.2 255.255.255.252 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/1 

 ip vrf forwarding ClientB 

 ip address 10.1.1.2 255.255.255.252 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/2 

 ip address 192.168.1.1 255.255.255.252 

 mpls ip 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/3 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/4 

 no ip address 

 shutdown 



 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/5 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/6 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/7 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

router ospf 110 

 log-adjacency-changes 

 network 172.16.0.0 0.0.255.255 area 0 

 network 192.168.1.0 0.0.0.255 area 0 

! 

router rip 

 version 2 

 ! 

 address-family ipv4 vrf ClientB 

 redistribute bgp 64999 metric 1 

 network 10.0.0.0 

 no auto-summary 

 version 2 

 exit-address-family 

 ! 

 address-family ipv4 vrf ClientA 

 redistribute bgp 64999 metric 1 

 network 10.0.0.0 

 no auto-summary 

 version 2 

 exit-address-family 

! 

router bgp 64999 

 no bgp default ipv4-unicast 

 bgp log-neighbor-changes 

 neighbor 172.16.1.3 remote-as 64999 



 neighbor 172.16.1.3 update-source Loopback0 

 ! 

 address-family vpnv4 

 neighbor 172.16.1.3 activate 

 neighbor 172.16.1.3 send-community extended 

 exit-address-family 

 ! 

 address-family ipv4 vrf ClientB 

 redistribute rip metric 1 

 no synchronization 

 exit-address-family 

 ! 

 address-family ipv4 vrf ClientA 

 redistribute rip metric 1 

 no synchronization 

 exit-address-family 

! 

no ip http server 

no ip http secure-server 

! 

! 

logging alarm informational 

! 

! 

control-plane 

! 

! 

gatekeeper 

 shutdown 

! 

! 

line con 0 

 stopbits 1 

line aux 0 

 stopbits 1 

line vty 0 4 

 login 

! 

! 

End 

 

 

 

 

 

 

 



 

 

P 
 

 

P#sh run 

Building configuration... 

 

Current configuration : 1596 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname P 

! 

boot-start-marker 

boot-end-marker 

! 

! 

no aaa new-model 

! 

resource policy 

! 

ip cef 

! 

! 

! 

interface Loopback0 

 ip address 172.16.1.2 255.255.255.255 

! 

interface FastEthernet0/0 

 no ip address 

 shutdown 

 duplex half 

! 

interface Serial1/0 

 ip address 192.168.1.2 255.255.255.252 

 mpls ip 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/1 

 ip address 192.168.1.5 255.255.255.252 

 mpls ip 



 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/2 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/3 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/4 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/5 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/6 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/7 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

router ospf 110 

 log-adjacency-changes 

 network 172.16.0.0 0.0.255.255 area 0 

 network 192.168.1.0 0.0.0.255 area 0 

! 

no ip http server 

no ip http secure-server 

! 



! 

! 

logging alarm informational 

! 

! 

control-plane 

! 

! 

gatekeeper 

 shutdown 

! 

! 

line con 0 

 stopbits 1 

line aux 0 

 stopbits 1 

line vty 0 4 

 login 

! 

! 

End 

 

 

 

 

PE_Z 
 

 

PE_Z#sh run 

Building configuration... 

 

Current configuration : 2604 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname PE_Z 

! 

boot-start-marker 

boot-end-marker 

! 

! 

no aaa new-model 

! 

resource policy 



! 

ip cef 

! 

! 

! 

! 

ip vrf ClientA 

 rd 999:1 

 route-target export 64999:1 

 route-target import 64999:1 

! 

ip vrf ClientB 

 rd 999:2 

 route-target export 64999:2 

 route-target import 64999:2 

! 

! 

interface Loopback0 

 ip address 172.16.1.3 255.255.255.255 

! 

interface FastEthernet0/0 

 no ip address 

 shutdown 

 duplex half 

! 

interface Serial1/0 

 ip vrf forwarding ClientA 

 ip address 10.1.1.6 255.255.255.252 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/1 

 ip vrf forwarding ClientB 

 ip address 10.1.1.6 255.255.255.252 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/2 

 ip address 192.168.1.6 255.255.255.252 

 mpls ip 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/3 

 no ip address 

 shutdown 

 serial restart-delay 0 



 no dce-terminal-timing-enable 

! 

interface Serial1/4 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/5 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/6 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/7 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

router ospf 110 

 log-adjacency-changes 

 network 172.16.0.0 0.0.255.255 area 0 

 network 192.168.1.0 0.0.0.255 area 0 

! 

router rip 

 version 2 

 ! 

 address-family ipv4 vrf ClientB 

 redistribute bgp 64999 metric 1 

 network 10.0.0.0 

 no auto-summary 

 version 2 

 exit-address-family 

 ! 

 address-family ipv4 vrf ClientA 

 redistribute bgp 64999 metric 1 

 network 10.0.0.0 

 no auto-summary 

 version 2 

 exit-address-family 



! 

router bgp 64999 

 no bgp default ipv4-unicast 

 bgp log-neighbor-changes 

 neighbor 172.16.1.1 remote-as 64999 

 neighbor 172.16.1.1 update-source Loopback0 

 ! 

 address-family vpnv4 

 neighbor 172.16.1.1 activate 

 neighbor 172.16.1.1 send-community extended 

 exit-address-family 

 ! 

 address-family ipv4 vrf ClientB 

 redistribute rip metric 1 

 no synchronization 

 exit-address-family 

 ! 

 address-family ipv4 vrf ClientA 

 redistribute rip metric 1 

 no synchronization 

 exit-address-family 

! 

no ip http server 

no ip http secure-server 

! 

! 

! 

logging alarm informational 

! 

! 

control-plane 

! 

! 

! 

gatekeeper 

 shutdown 

! 

! 

line con 0 

 stopbits 1 

line aux 0 

 stopbits 1 

line vty 0 4 

 login 

! 

! 

end 



 

 

 

 

 

 

 

 

 

 

 

A2 
 

 

A2#sh run 

Building configuration... 

 

Current configuration : 1441 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname A2 

! 

boot-start-marker 

boot-end-marker 

! 

! 

no aaa new-model 

! 

resource policy 

! 

ip cef 

! 

! 

interface FastEthernet0/0 

 no ip address 

 shutdown 

 duplex half 

! 

interface Serial1/0 

 ip address 10.1.1.5 255.255.255.252 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 



interface Serial1/1 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/2 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/3 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/4 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/5 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/6 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/7 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

router rip 

 version 2 

 network 10.0.0.0 

 no auto-summary 

! 



no ip http server 

no ip http secure-server 

! 

! 

! 

logging alarm informational 

! 

! 

! 

control-plane 

! 

! 

! 

gatekeeper 

 shutdown 

! 

! 

line con 0 

 stopbits 1 

line aux 0 

 stopbits 1 

line vty 0 4 

 login 

! 

! 

End 

 

 

 

 

B2 
 

B2#sh run 

Building configuration... 

 

Current configuration : 1441 bytes 

! 

version 12.4 

service timestamps debug datetime msec 

service timestamps log datetime msec 

no service password-encryption 

! 

hostname B2 

! 

boot-start-marker 

boot-end-marker 

! 



! 

no aaa new-model 

! 

resource policy 

! 

ip cef 

! 

! 

! 

interface FastEthernet0/0 

 no ip address 

 shutdown 

 duplex half 

! 

interface Serial1/0 

 ip address 10.1.1.5 255.255.255.252 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/1 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/2 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/3 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/4 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/5 

 no ip address 

 shutdown 

 serial restart-delay 0 



 no dce-terminal-timing-enable 

! 

interface Serial1/6 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

interface Serial1/7 

 no ip address 

 shutdown 

 serial restart-delay 0 

 no dce-terminal-timing-enable 

! 

router rip 

 version 2 

 network 10.0.0.0 

 no auto-summary 

! 

no ip http server 

no ip http secure-server 

! 

! 

! 

logging alarm informational 

! 

! 

! 

control-plane 

! 

! 

! 

gatekeeper 

 shutdown 

! 

! 

line con 0 

 stopbits 1 

line aux 0 

 stopbits 1 

line vty 0 4 

 login 

! 

! 

End 

 

 



 

 

Dynamips file 

 
# Simple lab 

 

autostart = False 

 

 

[localhost] 

 

    [[7200]] 

        #image = \Program Files\Dynamips\images\c7200-adventerprise.124-6.image 

        # On Linux / Unix use forward slashes: 

        image = /home/alex/cisco_images/c7200-advent.124-6.image 

        mmap = False 

        npe = npe-400 

        ram = 256 

        idlepc = 0x60713e28 

 

 

    [[ROUTER A1]] 

        s1/0 = PE_A s1/0 

        model = 7200 

 

    [[router B1]] 

        model = 7200 

        s1/0 = PE_A s1/1 

 

    [[router PE_A]] 

        model = 7200 

        s1/2 = P s1/0 

 

    [[router PE_Z]] 

        model = 7200 

        s1/2 = P s1/1 

 

    [[router P]] 

        model = 7200 

 

    [[router A2]] 

        model = 7200 

        s1/0 = PE_Z s1/0 

 

    [[router B2]] 

        model = 7200 

        s1/0 = PE_Z s1/1 


